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Spectral Domain Analysis of an Open Slot
Ring Resonator

KENJI KAWANO AND HISASHI TOMIMURO

Abstract —A full wave analysis of an open slot ring resonator on a

dielectric substrate is presented. It is based npon Galerkin’s method in the

Hankel transform domain. Tke compnted resonant frequencies for several

slot widths agree well with the experimental vahres on alnmina substrate

with E,= 9.6 in the 26–37-GHz frequency range.

1. INTRODUCTION

M ICROSTRIP DISK and ring resonators are utilized

as resonators, filters, antennas, and other circuit

elements for microwave integrated circuits [1]. These reso-

nators early have been analyzed by a magnetic wall model

[2]-[4]. Although this analysis method is simple and useful,

more rigorous analyses have been required for more accu-

rate design. Hence many improved analyses have been

reported [5]–[7]. Furthermore, Araki and Itoh have devel-

oped a rigorous full wave analysis to obtain accurate

resonant frequencies and radiation patterns [8]. The analy-

sis is based upon Galerkin’s method in the Hankel trans-

form domain.

Meanwhile, the authors have developed slot ring resona-

tors to measure accurate guide wave lengths of slot liries

[9]. Although slot ring resonators are considered to be

useful as circuit elements for microwave integrated circuits,

they have not been analyzed yet.

This paper presents resonant frequencies of an open slot

ring resonator determined by the Hankel transform do-

main analysis. In Section II, dyadic Green functions and

the characteristic equation are derived and the sensitivity

of the solution with respect to the basis functions is in-

vestigated. h-s Section III, the experimental procedure for

alumina substrate is described. In Section IV. the com-

puted resonant frequencies are compared with the mea-

sured values. It is shown that the numerical results agree

well with the experimental results, especially for wide width

region of slots.

H. ANALYSIS METHOD

A. Green Functions

Fig. 1 shows the slot ring resonator to be analyzed. A

ring-like slot line is placed on the bottom surface of the

substrate of thickness d. It is assumed that metals are

infinitely thin and perfect conductors and that the sub-
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Fig. 1. Slot ring resonator and the coordinate system. @Upper air re-

gion. @Substrate region. @) Lower am region.

strate material, whose permittivity and permeability are c,

and p,, respectively, is Iossless.
1) Field Expression: The first step is to derive the

tangential field components. It is well known that the

electromagnetic fields can be obtained from a superposi-

tion of TE and TM fields.

The axial field components EZ(r, 0, z) and H,(r, 0, z),

which satisfy the Helmholtz equation, can be expressed

with the definition of the Hankel transform as follows [10].

A) In upper air region (z> d):

E:1(r,6, z)=eJ”o L*() A’ a e-JB’(’-d)~n(ar) ada (la)

HZ1(r, O,z)=eJ”@ JmoAh a e-’~’tz-d)~~(ar) ada.

(lb)

B) In substrate region (d> z > O):

Ez1(r,6, z)=eJ”e jm{~e(~) sin (132z)
o

+Ce(a) cos (&z)} ~n(ar)ada (lC)

HZ2(r,0, z)=eJ”@ ~@{ Bh(a) sin (&z)

+Ch(a) cos (~zz)}.l. (ar)ada. (id)

C) In lower air region (0> z ):

Ez3(r,0, z)=eJ”0 ~mDe(a)eJp3’~.( ar)ada (le)

HZ3(r,6, z)=eJ”o ~mDA(a)eJB’’~.(ar)ada (if)

where subscripts 1, 2, and 3 designate the upper air,

substrate and lower air region, and

p;= W%,pl –az @ = Jc2p2-a2

& = &3p3 –az

6,=t3=Eof~=6#o

PI ‘P3 ‘PO P2=P,P0
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where a is the Hankel transform variable, u is the angular

resonant frequency, co and PO are the free space permittiv-

ity and permeability. J. ( ar ) is the Bessel function of the

first kind and nth order. A’(a),. . “ , Dh (a) are unknown
coefficients which are determined from the boundary con-

ditions at the interfaces z = O and z = d. The radical and

azimuthal field components derived from (1) contain the

Bessel functions of n – lth order and n + lth order because

of the derivative with respect to the argument r. Therefore,

the following expressions will be used to reduce them to

the same order of the Bessel functions:

EJ&(r,6, z)=13,1(r,6, z)*jEO, (r,6, z) (2a)

H,&(r, O,z)=H,, (r, O,z)*jHOZ(r, O,z) (2b)

where E,, (r, 0, z) and &Z(r, 0, z) are the radical and

azimuthal electric field components, respectively, and

H,i(r, 6, z) and HO, (r, 8, z) are the radical and azimuthal

magnetic field components, respectively.

2) Boundary Conditions: The second step is to apply the

boundary conditions at the interfaces z = O and z = d to

obtain Green functions. They are as follows.

a) Top substrate surface (z= d): The tangential field

components are continuous

E1&(r,8, d)=132~(r,8, z) (3a)

H1&(r,6, z)= H2&(r, @,z). (3b)

b) Bottom substrate surface (z= O):The electric field

components are continuous and the magnetic field compo-

nents are related to the conductor current densities, that is,

E2&(r,6,0) =E3~(r,0,0) =E~(r, ~,0) (4a)

J&(r,6,0)= *j{ H2A(r, fl, o)- H33(r, @~o)}

(4b)

where E ~.( r, 0, O) and J&( r, 8, O) are the unknown tangen-
tial electric field components and conductor current densi-

ties, respectively.

From (2), (3), and (4a), Be(a), C’(CY), D’(cY), Bk(a),

Ch (a), and Dh (a) are expressed in terms of the tangential

electric field components E ~ ( r, 0, z) at the interface z = O.

From these expressions and (4b), the following matrix

equation is obtained:

(

G++(a,a) G+_(LJ,a)

G_+(u,a) G__(@,a)

(5)

where ~+(a) are the Hankel transforms of the conductor—..
current densities J&( r, 8, z) at the interface z = O.

Expressions for ~++ (u, a),” “ “, G__ (o,a) are as fOl-

10WS:

toc~j~q j~~ –8,c, tan (Bzd)
~++(~~a) = 2~2 ~lt,+ j@2 tan (B2~)

2/33

j% Flu,+ j& tan (Ld) &
2UPZ j~2– Pip, tan (&d) 2(.qJ3

(6a)
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and

J% PIP,+ .A tan (&d) /33
2WP2 j~, –P,prtm (Ad) 24L3

(6b)

G_+((.J,a) =G+_(LJ,a) (6c)

G__(u, a)= G++(LJ, a) (6d)

where G++(a, ti),. “ ., &_ (a,@) are the admittance Green

functions in the Hankel transform domain.

B. Characteristic Equation

The third step is to derive the characteristic equation.

Although the matrix equation (5) contains four unknown

functions ~ ~ (a) and ~~ (a), the functions ~y (a) can be

eliminated by using Galerkin’s method in the Hankel

transform domain.

First, we expand unknown ~ti (a) in terms of known

basis functions ~~ ~(a)

z+ (a)= i Cmi+n, (a) (7a)
~=1

~_ (a)= ~ dmi_m(a) (7b)
~=1

where cm, dn are unknown constants.

Next, we substitute (7) into (5) and take inner products

with ~ ~ i ( a). Then the following algebraic equations are

obtained:

~ ~~+(@)Cm+ ~ K~-(~)d.=O (i=l,2,..., )
m=l ~=1

(8a)

5 ~j+(~)cm+ i Kj-(u)dm=o (i=l,2, ”,)
~=1 ??1=1

(8b)

where

~L+(~)=Jm~+l(~)~++ (~j~)fi+tn(~)~d~ (ga)

KL-(Q)=}i+l(a)G+ -(tia)i.m(a)ada (gb)

K-+(u) =~m#_l((x)&+ (u,a)~+~(a)ada (9c)

~;-(ti)=;mz-i(a)G-- (@ja)fi-m(a)ada. (gal)
o

In the derivation of (8), Parseval’s theorem in the Hankel

transform domain is used

J%J~)L(~)~d~
o

‘~~E,(r,O,O)J~( r,0,0)rdr=O(i=l,2,--,)
o

(lo)
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—Eq.(12)
---- Eq.(13)

Er=9,6 d=O.3mm ra=10.Omm
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Fig. 2. Resonant frequency of the slot ring resonators for different basis
functions as a function of line width. n is the azimuthal resonant order.

which is valid since the electric field components E ~ (r, d, O)

and the current densities Jy (r, 0, O) are zero in the comple-

mentary regions of the interface at z = O.

The following characteristic equation for the complex

resonant frequency UO is obtained by setting zero the

determinant of the coefficient matrix K(o). The resonant

frequency is obtained from the real part of this quantity

det lK(tiO)l=O. (11)

C. Basis Functions

As one term approximation using well-behaved basis

functions gives good results for infinite slot lines [9], [11],

the following basis functions are assumed, that is, the

number of the basis functions is only one:

[-(1 l+l~\3) (forlr–rm,
Er(r)= 2W

I<w)

~ O (for other r)

(12a)

EO(r)=O (forall r). (12b)

In the case of a slot line, the characteristic equation

reduces to the evaluation of a single integral when the

line-length-directed field component is assumed zero. In

the case of a slot ring resonator, however, the characteristic

equation contains four integrals even if Ed(r)= O.

Hence, in order to investigate the sensitivity of the

solution with respect to the basis functions, the following

functions are assumed in addition to (12):

{
E.(r)= ~

(forlr-r~l <W)

(for other r)
(13a)

Eo(r)=O (forallr) (13b)

where rn = l\2(r~ + r,).

The Hankel transforms of these functions were obtained

by numerical integration. The upper and lower integration

limits were determined by the limits of the Bessel function’s

argument in ECL’S computer library.

Fig. 2 shows the numerical results of the 13th-order

resonant frequencies versus the slot width. As the dif-

ference between both results is small, it is considered that

the sensitivity of the solution with respect to the basis

functions is relatively small. In computation, the solution

1 , I
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Fig. 3. Experimental geometry for the measurement of a slot ring
resonator.
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Fig. 4. Theoretical and experimental resonant frequencies for the slot

ring resonators as a function of line width. n is the ammuthaf resonant

order.

for (11) has been obtained by the method of successive

bisection. The integration has been performed in the real

axis of the complex a plane, avoiding the poles of

(7+ + (Gj, a), etc., the matrix elements K~+ (cJ,a), etc. A

typical computer time is about 20 s on DIPS-M2.

111. EXPERIMENTAL PROCEDURE

Fig. 3 shows the experimental geometry of a slot ring

resonator. Microstrip lines are used for input and output

terminals of electromagnetic power on the opposite side of

the ring-like slot line. The former is shown as the solid lines

and the latter is shown as the dotted lines. The coupling

gap between the microstrip lines and the slot line is about

25 pm. The substrate is 25X 25X0.3-mm alumina with the

relative dielectric constant 9.6. The metals are 0.02 pm

thick nickel-chromium and 4-pm thick gold. The widths of

the ring-like slot lines studied are 180, 300, 450, and 600

pm. A1lLof them have the same 10-mm outer radius.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

Fig. 4 shows the resonant frequencies computed from

(12) and the measured resonant frequencies. The frequency

range investigated is 26–37 GHz which corresponds to

about the 10th resonant order. When slot line width in-
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creases, the resonant frequency also increases. This means

that one wavelength, decreases for wider width slot since

the outer radius ra is constant. The numerical results agree

with the experimental results within about 3 percent, espe-

cially about 1 percent in the wide linewidth region. It is

considered that the sources of the relatively large dif-

ferences in the narrow line width region are attributed to

the basis function. In order to improve the numerical

results for this region, more detailed investigation for the

basis function is required. Q values for these resonators are

about 500.

V. CONCLUSION

A numerical method is presented for obtaining the reso-

nant frequencies of open slot ring resonators. The analysis

method is based upon Galerkin’s method in the Hankel

transform domain. The dependence of the solution on the

choice of the basis functions is small. The numerical results

obtained by this method agree with the experimental re-

sults within about 3 percent.
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