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Spectral Domain Analysis of an Open Slot
Ring Resonator

KENJI KAWANO anp HISASHI TOMIMURO

Abstract —A full wave analysis of an open slot ring resonator on a
dielectric substrate is presented. It is based upon Galerkin’s method in the
Hankel transform domain. The computed resonant frequencies for several
slot widths agree well with the experimental values on alumina substrate
with €, = 9.6 in the 26-37-GHz frequency range.

I. INTRODUCTION

ICROSTRIP DISK and ring resonators are utilized

as resonators, filters, antennas, and other circuit
elements for microwave integrated circuits [1]. These reso-
nators early have been analyzed by a magnetic wall model
[2]~-[4]. Although this analysis method is simple and useful,
more rigorous analyses have been required for more accu-
rate design. Hence many improved analyses have been
reported [5]-[7]. Furthermore, Araki and Itoh have devel-
oped a rigorous full wave analysis to obtain accurate
resonant frequencies and radiation patterns [8]. The analy-
sis is based upon Galerkin’s method in the Hankel trans-
form domain.

Meanwhile, the authors have developed slot ring resona-
tors to measure accurate guide wave lengths of slot lines
[9]. Although slot ring resonators are considered to be
useful as circuit elements for microwave integrated circuits,
they have not been analyzed yet.

This paper presents resonant frequencies of an open slot
ring resonator determined by the Hankel transform do-
main analysis. In Section II, dyadic Green functions and
the characteristic equation are derived and the sensitivity
of the solution with respect to the basis functions is in-
vestigated. In Section III, the experimental procedure for
alumina substrate is described. In Section IV. the com-
puted resonant frequencies are compared with the mea-
sured values. It is shown that the numerical results agree
well with the experimental results, especially for wide width
region of slots.

II. ANALYSIS METHOD

A. Green Functions

Fig. 1 shows the slot ring resonator to be analyzed. A
ring-like slot line is placed on the bottom surface of the
substrate of thickness d. It is assumed that metals are
infinitely thin and perfect conductors and that the sub-
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Fig. 1. Slot ring resonator and the coordinate system. (D) Upper air re-
gion. @) Substrate region. 3)Lower air region.

strate material, whose permittivity and permeability are e,
and p,, respectively, is lossless.

1) Field Expression: The first step is to derive the
tangential field components. It is well known that the
electromagnetic fields can be obtained from a superposi-
tion of TE and TM fields.

The axial field components E, (7,0, z) and H,(r,8, z),
which satisfy the Helmholtz equation, can be expressed
with the definition of the Hankel transform as foliows [10].

A) In upper air region (z>d):

E (r,0,z)= ef"ofmAe(a)e_fB‘(z'd)Jn(ar)ada (1a)
0
o0

Hzl(r,ﬁ,z):ef”"f A"(@)e =D (ar)ada.
0

(1b)
B) In substrate region (d > z>0):
E,(r,0,z)= ef""foo{Be(a) sin (3,2)
0
+C¢(a) cos (B,z) }J,(ar)ada
H,(r,0,z)= e/"efw{Bh(a) sin (B,2)
0
+C"(a) cos (Byz)}J, (ar)ada . (1d)
C) In lower air region (0> z):

o0
E, (r,8,z)= e/”a/ De(a)e’? ] (ar)ada
0

(Ic)

(Te)
(19)

where subscripts 1, 2, and 3 designate the upper air,
substrate and lower air region, and

H_,(r,0,z)=e"? th(a e’?2] (ar)ada
z3 o n
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where o is the Hankel transform variable,  is the angular
resonant frequency, €, and p, are the free space permittiv-
ity and permeability. J,(ar) is the Bessel function of the
first kind and nth order. 4°(a),---,D"(a) are unknown
coefficients which are determined from the boundary con-
ditions at the interfaces z=0 and z =d. The radical and
azimuthal field components derived from (1) contain the
Bessel functions of #n — 1th order and » + 1th order because
of the derivative with respect to the argument r. Therefore,
the following expressions will be used to reduce them to
the same order of the Bessel functions:

E .(r,0,2)=E,(r,0,z)* jE,(r,0,z) (2a)
H,.(r,0,z2)=H,(r.0,z)* jH,(r,0,z) (2b)

where E,(r,0,z) and E4(r.0,z) are the radical and
azimuthal electric field components, respectively, and
H (r,0,z) and H,(r,0,z) are the radical and azimuthal
magnetic field components, respectively.

2) Boundary Conditions: The second step is to apply the
boundary conditions at the interfaces z=0 and z=4d to
obtain Green functions. They are as follows.

a) Top substrate surface (z=d):The tangential field
components are continuous

E . (r,0,d)=E,. (r,0,z)
H . (r,0,z)=H,.(r,0,z).

(3a)
(3b)

b) Bottom substrate surface (z=0):The electric field
components are continuous and the magnetic field compo-
nents are related to the conductor current densities, that is,

E,. (r,0,0)=E,.(r,0,0)=E_.(r,0,0) (4a)
J.(r,0,0)==j{H,.(r,8,0)— H;.(r,6,0)}
| (4v)

where E, (r,0,0) and J (r,6,0) are the unknown tangen-
tial electric field components and conductor current densi-
ties, respectively.

From (2), (3), and (4a), B¢(a), C¢(a), D°(a), B*(a),
C"(a), and D" () are expressed in terms of the tangential
electric field components E . (r, 6, z) at the interface z=0.

From these expressions and (4b), the following matrix

equation is obtained:
_ J +(a)
J_(&)

(5)
where J, (a) are the Hankel transforms of the conductor
current densities J .. (7, 0, z) at the ix}terface z=0.

Expressions for G, , (w,a),"--,G__(w,a) are as fol-
lows:

£y (a)
E_(a)

é++ (w,a) C~;+, (w,a)
G_ (w,a) G__(w,@)

jwey jBy — Bie, tan (B,d) _ wes
2B, Bie,+ jB, tan (B,d) 2B
B Bt JB, tan (B,d) B
20py jB, — Bk, tan (Byd)  2wps
| (62)

Gyi(w,@)=
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and

_Jwey jBy— Bye, tan (B,d) 4 L&
28, Bie,+ jB,tan (B,d) 2B

7> Bl“r+jBZtan(BZd)_ B,

G~+—(wu[)’):

 20m; jB,—Bip, tan (Byd)  20m;
(6b)
é_+(w,a)zé+_(w,a) (6¢)
6__(w,0)=G, ,(w,a) (6d)

where G, . (a,w)," - .,G__(a,w) are the admittance Green
functions in the Hankel transform domain.

B. Characteristic Equation

The third step is to derive the characteristic equation.
Although the matrix equation (5) contains four unknown
functions E . (&) and J. (), the functions J. (&) can be
eliminated by using Galerkin’s method in the Hankel
transform domain.

First, we expand unknown E . («) in terms of known
basis functions £ . ,,(«)

(7a)

o
+
~
]
~
il

cmE+nz(a)

—

4,F(a)

o
o~
>3
—
I

HY LRI YL

(7v)

where ¢,,, d,, are unknown constants.

Next, we substitute (7) into (5) and take inner products
with E, ;(a). Then the following algebraic equations are
obtained:

M M
2 Kttn+(w)cm+ 2 Kl_';n—(w)dmzo (i:1527"'a)
m=1 m=1

(8a)

(,':1,2’...,)

n

2_ K (w)e,+ %}4 K, (w)d,,=0

m=1
(8b)
where

K ()= ["E. (06 (0.0)E ., (a)ada (%)
K ()= [ ()G, - (0,0)E_, ()ada (9)
Ko ()= [E- (a)G (0,0)E p(e)ada (%)
Ko (0)= fo “E ()G (w,0)E_,(a)ade. (9d)

In the derivation of (8), Parseval’s theorem in the Hankel
transform domain is used

j(;ooEt,(a)J; (a)ade

= [TE..(r,0,007(r,8,0) rdr=0(i=12,---,)
’ (10)
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— Eq.(12)
---~Eq.(13)
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Fig. 2. Resonant frequency of the slot ring resonators for different basis
functions as a function of line width. » is the azimuthal resonant order.

which is valid since the electric field components E .. (7, 8,0)
and the current densities J . (r, §,0) are zero in the comple-
mentary regions of the interface at z=0.

The following characteristic equation for the complex
resonant frequency w, is obtained by setting zero the
determinant of the coefficient matrix K(w). The resonant
frequency is obtained from the real part of this quantity

det | K (wy)] = 0. (11)
C. Basis Functions

As one term approximation using well-behaved basis
functions gives good results for infinite slot lines [9],[11],
the following basis functions are assumed, that is, the
number of the basis functions is only one:

1 r "ty .5 _
B(r)= s (1H15521) (forr =1, | <w)
0  (for other r)
(12a)
E,(r)=0  (forallr). (12b)

In the case of a slot line, the characteristic equation
reduces to the evaluation of a single integral when the
line-length-directed field component is assumed zero. In
the case of a slot ring resonator, however, the characteristic
equation contains four integrals even if E4(r)=0.

Hence, in order to investigate the sensitivity of the
solution with respect to the basis functions, the following
functions are assumed in addition to (12):

e (for|r —r,|<W)
E'(r)_{o (for other r) (13a)
E,(r)y=0 (forallr) (13b)

where 1, =1/2(r, +r,).

The Hankel transforms of these functions were obtained
by numerical integration. The upper and lower integration
limits were determined by the limits of the Bessel function’s
argument in ECL’s computer library.

Fig. 2 shows the numerical results of the 13th-order
resonant frequencies versus the slot width. As the dif-
ference between both results is small, it is considered that
the sensitivity of the solution with respect to the basis
functions is relatively small. In computation, the solution
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Fig. 4. Theoretical and experimental resonant frequencies for the slot
ring resonators as a function of line width. # is the azzmuthal resonant
order.

for (11) has been obtained by the method of successive
bisection. The integration has been performed in the real
axis of the complex a plane, avoiding the poles of
G, . (w,a), etc., the matrix elements K, " (w,a), etc. A
typical computer time is about 20 s on DIPS-M?2.

JII. EXPERIMENTAL PROCEDURE

Fig. 3 shows the experimental geometry of a slot ring
resonator. Microstrip lines are used for input and output
terminals of electromagnetic power on the opposite side of
the ring-like slot line. The former is shown as the solid lines
and the latter is shown as the dotted lines. The coupling
gap between the microstrip lines and the slot line is about
25 pm. The substrate is 25X25<0.3-mm alumina with the
relative dielectric constant 9.6. The metals are 0.02 pm
thick nickel-chromium and 4-pm thick gold. The widths of
the ring-like slot lines studied are 180, 300, 450, and 600
pm. All of them have the same 10-mm outer radius.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

Fig. 4 shows the resonant frequencies computed from
(12) and the measured resonant frequencies. The frequency
range investigated is 26-37 GHz which corresponds to
about the 10th resonant order. When slot line width in-
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creases, the resonant frequency also increases. This means
that one wavelength decreases for wider width slot since
the outer radius 7, is constant. The numerical results agree
with the experimental results within about 3 percent, espe-
cially about 1 percent in the wide linewidth region. It is
considered that the sources of the relatively large dif-
ferences in the narrow line width region are attributed to
the basis function. In order to improve the numerical
results for this region, more detailed investigation for the
basis function is required. Q values for these resonators are
about 500.

V. CONCLUSION

A numerical method is presented for obtaining the reso-
nant frequencies of open slot ring resonators. The analysis
method is based upon Galerkin’s method in the Hankel
transform domain. The dependence of the solution on the
choice of the basis functions is small. The numerical results
obtained by this method agree with the experimental re-
sults within about 3 percent.
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